Progression Systems Do Not Work!!!!

Harman

Well-Known Member
Mathematical Proof that Progressions cannot overcome Expectation.
by Richard Reid
--------------------------------------------------------------------------------

In "The Casino Gambler's Guide," Allan Wilson provided a mathematical proof of the fallacy that a progression can overcome a negative expectation in a game with even payoffs. This article expands on Wilson's Proof and provides the proof that progression systems cannot overcome a negative expectation even if the game provides uneven payoffs.
Let bk = the size of the kth bet.
Mk = the size of the payoff on the kth bet.
pk = the probability that the series terminates with a win on the kth bet, having been preceeded by k-1 losses in a row.
n-1 = the greatest number of losses in a row that a player can handle, given the size of the player's bankroll. In other words, the nth bet must be won, otherwise the player's entire bankroll will be lost.

Let's now define Bn = bn * Mn

The expected value for any series is:

Eseries = p1B1 + p2(B2-b1) + p3(B3-b2-b1) + . . . + pn(Bn-bn-1-bn-2- . . . -b2-b1) + (1-p1-p2- . . . -pn) * (-bn-bn-1-bn-2- . . . -b2-b1)

If we let

Eseries = A + B where,

A = p1B1 + p2(B2-b1) + p3(B3-b2-b1) + . . . + pn(Bn-bn-1-bn-2- . . . -b2-b1)

and

B = (1-p1-p2- . . . -pn) * (-bn-bn-1-bn-2- . . . -b2-b1)

then it is easier to see that "A" represents the probability that the series will end with a win multiplied by the bet size at the nth term in the series and "B" is the probability that the series ends in a loss multiplied by the net loss.

Now let's rearrange the terms in "A."

A = p1B1 + p2B2 - p2b1 + p3B3 - p3b2 - p3b1 + . . . + pnBn - pnbn-1 - pnbn-2 - . . . - pnb2 - pnb1
A = p1B1 + p2B2 + . . . + pnBn + b1(- p2 - p3 - . . . - pn) + b2(- p3 - . . . - pn) + bn-2(- pn-1 - pn) + bn-1(- pn)

And for "B" we get

B = -bn(1 - p1 - p2 - . . . - pn) - bn-1(1 - p1 - p2 - . . . - pn) - . . . - b2(1 - p1 - p2 - . . . - pn) - b1(1 - p1 - p2 - . . . - pn)

Now if we combine A and B again, we get,

Eseries = A + B
Eseries = p1B1 + p2B2 + . . . + pnBn - b1(1 - p1) - b2(1 - p1 - p2) - . . . - bn-1(1 - p1 - p2 - . . . - pn-1) - bn(1 - p1 - p2 - . . . - pn)
Eseries = p1B1 + p2B2 + . . . + pnBn + p1b1 + (p2 + p1)b2 + (p3 + p2 + p1)b3 + . . . + (pn + pn-1 + . . . + p2 + p1)bn - (b1 + b2 + . . . + bn)

Wilson points out that to get rid of the subscripts, all we have to do is realize that pk = (1-p)k-1p, where p is the probability of a win on an individual play and 1-p is the probability of a loss. If we think about it, it makes sense that the probability of a series terminating in a win at the kth level is the product of the probability of k-1 losses in a row multiplied by the probability of win on the kth trial.

So how do we use this information? Well, let's try substituting this expression for each pk and see what we get.

Eseries = (1-p)1-1pB1 + (1-p)2-1pB2 + . . . + (1-p)n-1pBn + (1-p)1-1pb1 + ((1-p)2-1p + (1-p)1-1p)b2 + ((1-p)3-1p + (1-p)2-1p + (1-p)1-1p)b3 + . . . + ((1-p)n-1p + (1-p)n-1-1p + . . . + (1-p)2-1p + (1-p)1-1p)bn - (b1 + b2 + . . . + bn)

Simplifying, we get

Eseries = (p(1-p)0B1 + (1-p)1pB2 + . . . + (1-p)n-1pBn + p(1-p)0b1 + ((1-p)1p + (1-p)0p)b2 + ((1-p)2p + (1-p)1p + (1-p)0p)b3 + . . . + ((1-p)n-1p + (1-p)n-2p + . . . + (1-p)1p + (1-p)0p)bn - (b1 + b2 + . . . + bn)

If we factor p out of the first parts of the equation and look closely, we can see that the kth term T can be written as:

T = p[(1-p)k-1]Bk + p[(1-p)k-1 + (1-p)k-2 + . . . + (1-p)2 + (1-p)1 + (1-p)0]bk

or rephrased for Bk = bk * Mk we get

T = p[(1-p)k-1Mk + (1-p)k-1 + (1-p)k-2 + . . . + (1-p)2 + (1-p)1 + (1-p)0]bk

If we substitute

C = (1-p)k-1 + (1-p)k-2 + . . . + (1-p)2 + (1-p)1 + (1-p)0

and if we multiply C by (1-p) and call this D

D = (1-p)C = (1-p)k + (1-p)k-1 + . . . + (1-p)3 + (1-p)2 + (1-p)1

Now, if we subtract C from D, we get

D - C = (1-p)C - C = (1-p)k - (1-p)0
[(1-p) - 1]C = (1-p)k - (1-p)0
C = [(1-p)k - 1]/[(1-p) - 1] or
C = [(1-p)k - 1]/-p]


Now if we substitute C back into T, we get

T = p[(1-p)k-1Mk + [(1-p)k - 1]/-p]bk
T = p(1-p)k-1Mk + 1 - (1-p)k]bk
T = p(1-p)k-1Mk + 1 - (1-p)(1-p)k-1]bk
T = [[pMk - (1-p)](1-p)k-1 + 1]bk This now allows us to write the equations in terms of summations. We therefore get

Eseries = sum {[[pMk - (1-p)](1-p)k-1]bk} + sum {bk} - sum {bk}, for k = 1 to n

The last two terms cancel, so we are left with:

Eseries = sum {[pMk - (1-p)](1-p)k-1]bk}, for k = 1 to n
Eseries = sum {[(1+Mk)p - 1](1-p)k-1]]bk}, for k = 1 to n

If we now look closely at this equation, we can make several observations. First, the sign of Eseries depends solely on the resulting sign of [(1+Mk)p - 1]. To make things a little easier to follow, let's say we're dealing with a game that has even payoffs. This means that Mk = 1 and therefore
Eseries = sum {[2p - 1](1-p)k-1]]bk}, for k = 1 to n
Eseries = [2p - 1]sum {(1-p)k-1]]bk}, for k = 1 to n

Now it is a little easier to see what is going on. For example, if we are in an unfair game, then p < 0.5 and we can easily see that 2p-1 will be a negative value. For example, if our chance of winning is only 49%, then p = 0.49 and 2p-1 = -0.02. In an even game, p = 0.5 and we see that 2*0.5-1 = 0. In this case, the equation is telling us that in an even game the expected value is zero just as we would expect it should. If we are playing a game with an advantage, then p > 0.5 and 2p-1 will be positive.

The general formula for uneven payoffs work just as well, but is more complicated to understand. Suffice to say that if [(1+Mk)p - 1] is negative, then regardless of the progression, the game will eventually result in a loss for the player.

Hopefully, this post will provide definitive proof of the fallacy of trying to overcome a negative expectation by using any type of progression whether it be the martingale or some other modern progression.
 

Canceler

Well-Known Member
This will be good for that one person on the planet who (1) believes progressions work, and (2) can understand that proof.
 
Liquid Chips said:
I believe in keeping it simple:

Progressions don't work because table limits aren't high enough.:grin:
That's just a little too simple. I'm going to take you all back to grammar school- Distributive Property of Multiplication.

That's why progressions don't work.
 

zengrifter

Banned
Automatic Monkey said:
That's just a little too simple. I'm going to take you all back to grammar school- Distributive Property of Multiplication.
Wow, what grammar school did you go to? zg
 
zengrifter said:
Wow, what grammar school did you go to? zg
A Catholic one. Progressions didn't work in bingo either.

But wow this takes me back now. In high school, they set up a "Casino Night" as a fundraiser and they had a cheap plastic roulette wheel. Someone made a roulette layout out of cardboard but they had misprinted it, they had written the pays for the thirds on the halves. Needless to say, I picked this up and bet it consistently, and won a bunch of dimes. My first advantage play!

After a while, they realized what was up, brought over a math teacher to verify, and a priest came over and demanded I give the money back. I refused, they made the layout and I had played it honestly. I just stood there with my head down, hearing my condemnation about how I cheated the church. And I walked away with my winnings.

And every time I have bad variance, I think about that. That some, and thus all, of my bankroll is cursed. Stolen from the saints. I need absolution.
 

shadroch

Well-Known Member
In the first place,its Reed Richards,not Richard Reid. And if he's such a genius,why did he and his group steal an experimental rocket a full thirty years after man first walked on the moon.
 

ihate17

Well-Known Member
Getting 86 d from the Church might not be good

Automatic Monkey said:
A Catholic one. Progressions didn't work in bingo either.

But wow this takes me back now. In high school, they set up a "Casino Night" as a fundraiser and they had a cheap plastic roulette wheel. Someone made a roulette layout out of cardboard but they had misprinted it, they had written the pays for the thirds on the halves. Needless to say, I picked this up and bet it consistently, and won a bunch of dimes. My first advantage play!

After a while, they realized what was up, brought over a math teacher to verify, and a priest came over and demanded I give the money back. I refused, they made the layout and I had played it honestly. I just stood there with my head down, hearing my condemnation about how I cheated the church. And I walked away with my winnings.

And every time I have bad variance, I think about that. That some, and thus all, of my bankroll is cursed. Stolen from the saints. I need absolution.
Hope they only backed you off of that wheel and did not excommunicate you for "taking" dimes from Saints.

ihate17
 

bj bob

Well-Known Member
Automatic Monkey said:
A Catholic one. Progressions didn't work in bingo either.


After a while, they realized what was up, brought over a math teacher to verify, and a priest came over and demanded I give the money back. I refused, they made the layout and I had played it honestly. I just stood there with my head down, hearing my condemnation about how I cheated the church. And I walked away with my winnings.

And every time I have bad variance, I think about that. That some, and thus all, of my bankroll is cursed. Stolen from the saints. I need absolution.
"Indulgentiam absolutionem et remissionem peccatorum tuorum, tribuat te Omnipotens et Misericors Dominus" There you go, my son, now go forth and sin no more!
 
Top